160 research outputs found

    Advance control of multilevel converters for integration of distributed generation resources into ac grid

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialDistributed generation (DG) with a converter interface to the power grid is found in many of the green power resources applications. This dissertation describes a multi-objective control technique of voltage source converter (VSC) based on multilevel converter topologies, for integration of DG resources based on renewable energy (and non-renewable energy)to the power grid. The aims have been set to maintain a stable operation of the power grid, in case of di erent types of grid-connected loads. The proposed method provides compensation for active, reactive, and harmonic load current components. A proportional-integral (PI) control law is derived through linearization of the inherently non-linear DG system model, so that the tasks of current control dynamics and dc capacitor voltage dynamics become decoupled. This decoupling allows us to control the DG output currents and the dc bus voltage independently of each other, thereby providing either one of these decoupled subsystems a dynamic response that signi cantly slower than that of the other. To overcome the drawbacks of the conventional method, a computational control delay compensation method, which delaylessly and accurately generates the DG reference currents, is proposed. The rst step is to extract the DG reference currents from the sensed load currents by applying the stationary reference frame and then transferred into synchronous reference frame method, and then, the reference currents are modi ed, so that the delay will be compensated. The transformed variables are used in control of the multilevel voltage source converter as the heart of the interfacing system between DG resources and power grid. By setting appropriate compensation current references from the sensed load currents in control circuit loop of DG link, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load voltages while required power of loads is more than the maximum injected power of the DG resources. The converter, which is controlled by the described control strategy, guarantees maximum injection of active power to the grid continuously, unity displacement power factor of power grid, and reduced harmonic load currents in the common coupling point. In addition, high current overshoot does not exist during connection of DG link to the power grid, and the proposed integration strategy is insensitive to grid overload.La Generació Distribuïda (DG) injectada a la xarxa amb un convertidor estàtic és una solució molt freqüent en l'ús de molts dels recursos renovables. Aquesta tesis descriu una técnica de control multi-objectiu del convertidor en font de tensió (VSC), basat en les topologies de convertidor multinivell, per a la integració de les fonts distribuïdes basades en energies renovables i també de no renovables.Els objectius fixats van encaminats a mantenir un funcionament estable de la xarxa elèctrica en el cas de la connexió de diferents tipus de càrregues. El mètode de control proposat ofereix la possibilitat de compensació de les components actives i reactives de la potencia, i les components harmòniques del corrent consumit per les càrregues.La llei de control proporcional-Integral (PI) s’obté de la linearització del model inherentment no lineal del sistema, de forma que el problema de control del corrent injectat i de la tensió d’entrada del convertidor queden desacoblats. Aquest desacoblament permet el control dels corrents de sortida i la tensió del bus de forma independent, però amb un d’ells amb una dinàmica inferior.Per superar els inconvenients del mètode convencional, s’usa un retard computacional, que genera les senyals de referència de forma acurada i sense retard. El primer pas es calcular els corrents de referència a partir de les mesures de corrent. Aquest càlcul es fa primer transformant les mesures a la referència estacionaria per després transformar aquests valors a la referència síncrona. En aquest punt es on es poden compensar els retards.Les variables transformades son usades en els llaços de control del convertidor multinivell. Mitjançant aquests llaços de control i les referències adequades, el convertidor és capaç de compensar la potencia activa, reactiva i els corrents harmònics de la càrrega amb una elevada resposta dinàmica, obtenint uns corrents de la xarxa de forma completament sinusoïdal, i en fase amb les tensions.El convertidor, controlat amb el mètode descrit, garanteix la màxima injecció de la potencia activa, la injecció de la potencia reactiva per compensar el factor de potencia de la càrrega, i la reducció de les components harmòniques dels corrents consumits per la càrrega. A més, garanteix una connexió suau entre la font d’energia i la xarxa. El sistema proposat es insensible en front de la sobrecarrega de la xarxaAward-winningPostprint (published version

    Distributed energy resources and benefits to the environment

    Get PDF
    The recently released report of the International Energy Outlook (IEO2009) projects an increase of 44% in the world energy demand from 2006 to 2030, and 77% rise in the net electricity generation worldwide in the same period. However, threatening in the said report is that 80% of the total generation in 2030 would be produced from fossil fuels. This global dependence on fossil fuels is dangerous to our environment in terms of their emissions unless specific policies and measures are put in place. Nevertheless, recent research reveals that a reduction in the emissions of these gases is possible with widespread adoption of distributed generation (DG) technologies that feed on renewable energy sources, in the generation of electric power. This paper gives a detailed overview of distributed energy resources technologies, and also discusses the devastating impacts of the conventional power plants feeding on fossil fuels to our environment. The study finally justifies how DG technologies could substantially reduce greenhouse gas emissions when fully adopted; hence, reducing the public concerns over human health risks caused by the conventional method of electricity generation

    Industrial applications of power electronics

    Get PDF
    Electronic applications use a wide variety of materials, knowledge, and devices, which pave the road to creative design, development, and the creation of countless electronic circuits with the purpose of incorporating them in electronic products. Therefore, power electronics have been fully introduced in industry, in applications such as power supplies, converters, inverters, battery chargers, temperature control, variable speed motors, by studying the effects and the adaptation of electronic power systems to industrial processes. Recently, the role of power electronics has been gaining special significance regarding energy conservation and environmental control. The reality is that the demand for electrical energy grows in a directly proportional manner with the improvement in quality of life. Consequently, the design, development, and optimization of power electronics and controller devices are essential to face forthcoming challenges. In this Special Issue, 19 selected and peer-reviewed papers discussing a wide range of topics contribute to addressing a wide variety of themes, such as motor drives, AC-DC and DC-DC converters, electromagnetic compatibility and multilevel converters.publishersversionpublishe

    Investigating Wind Generation Investment Indices in Multi-Stage Planning

    Get PDF
    This paper presents a Multi-stage stochastic bilevel model for the expansion planning of Wind resources in power systems at a multi-stage horizon. In this paper, the power system consists of a combination of fossil fuel technologies and Wind resources for investment. Demand is characterized by a certain number of demand blocks. The uncertainty of demand for each this block (for each time period of the curve) is determined by the scenario. Afterwards, the suggested model is converted to a mathematical programming with some equilibrium constraints. Following that, after linearization, a mixed integer linear program is obtained. This framework is examined on the IEEE RTS 24-bus network. The obtained simulation results confirm that this model can be appropriately used as a means to analyze the behavior of investments in wind and thermal units

    A Two Stage Hierarchical Control Approach for the Optimal Energy Management in Commercial Building Microgrids Based on Local Wind Power and PEVs

    Get PDF
    The inclusion of plug-in electrical vehicles (PEVs) in microgrids not only could bring benefits by reducing the on-peak demand, but could also improve the economic efficiency and increase the environmental sustainability. Therefore, in this paper a two stage energy management strategy for the contribution of PEVs in demand response (DR) programs of commercial building microgrids is addressed. The main contribution of this work is the incorporation of the uncertainty of electricity prices in a model predictive control (MPC) based plan for energy management optimization. First, the optimization problem considers the operation of PEVs and wind power in order to optimize the energy management in the commercial building. Second, the total charged power reference which is computed for PEVs in this stage is sent to the PEVs control section so that it could be allocated to each PEV. Therefore, the power balance can be achieved between the power supply and the load in the proposed microgrid building while the operational cost is minimized. The predicted values for load demand, wind power, and electricity price are forecasted by a seasonal autoregressive integrated moving average (SARIMA) model. In addition, the conditional value at risk (CVaR) is used for the uncertainty in the electricity prices. In the end, the results confirm that the PEVs can effectively contribute in the DR programs for the proposed microgrid model

    Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations

    Get PDF
    This paper presents a smart Transactive energy (TE) framework in which home microgrids (H-MGs) can collaborate with each other in a multiple H-MG system by forming coalitions for gaining competitiveness in the market. Profit allocation due to coalition between H-MGs is an important issue for ensuring the optimal use of installed resources in the whole multiple H-MG system. In addition, considering demand fluctuations, energy production based on renewable resources in the multiple H-MG can be accomplished by demand-side management strategies that try to establish mechanisms to allow for a flatter demand curve. In this regard, demand shifting potential can be tapped through shifting certain amounts of energy demand from some time periods to others with lower expected demand, typically to match price values and to ensure that existing generation will be economically sufficient. It is also possible to obtain the maximum profit with the coalition formation. In essence the impact of the consumption shifting in the multiple H-MG schedule can be considered while conducting both individual and coalition operations. A comprehensive simulation study is carried out to reveal the effectiveness of the proposed method in lowering the market clearing price (MCP) for about 15% of the time intervals, increasing H-MG responsive load consumption by a factor of 30%, and promoting local generation by a factor of three. The numerical results also show the capability of the proposed algorithm to encourage market participation and improve profit for all participants

    Optimal placement of non-site specific DG for voltage profile improvement and energy savings in radial distribution networks

    Get PDF
    This paper proposes a model based on Fuzzy Genetic Algorithm (FGA) to determine the optimal capacity and location of a DG unit in a radial distribution network. In the FGA, a fuzzy controller is integrated into GA to adjust the crossover and mutation rates dynamically to maintain the proper population diversity during GA's operation. This effectively overcomes the premature convergence problem of the simple genetic algorithm (SGA). The main objective functions considered in this study are maximisation of cost savings arising from energy loss, minimisation of voltage drops across all lines, and maximisation of the transfer capability of the system. The model takes into account the peculiarities of radial distribution networks, such as high R/X ratio, voltage dependency and composite nature of loads. The proposed model is evaluated on three radial test distribution systems, and the results obtained are very impressive, with high computational efficiency, when compared with those of the existing approaches cited in the literature

    Power quality improvement with a pulse width modulation control method in modular multilevel converters under varying nonlinear loads

    Get PDF
    UIDB/00667/2020 POCI-01-0145-FEDER-029803 (02/SAICT/2017) POCI-01-0145-FEDER-006961 (UID/EEA/50014/2019)In order to reach better results for pulse width modulation (PWM)-based methods, the reference waveforms known as control laws have to be achieved with good accuracy. In this paper, three control laws are created by considering the harmonic components of modular multilevel converter (MMC) state variables to suppress the circulating currents under nonlinear load variation. The first control law consists of only the harmonic components of the MMC's output currents and voltages. Then, the second-order harmonic of circulating currents is also involved with both upper and lower arm currents in order to attain the second control law. Since circulating current suppression is the main aim of this work, the third control law is formed by measuring all harmonic components of circulating currents which impact on the arm currents as well. By making a comparison between the switching signals generated by the three proposed control laws, it is verified that the second-order harmonic of circulating currents can increase the switching losses. In addition, the existence of all circulating current harmonics causes distributed switching patterns, which is not suitable for the switches' lifetime. Each upper and lower arm has changeable capacitors, named "equivalent submodule (SM) capacitors" in this paper. To further assess these capacitors, eliminating the harmonic components of circulating currents provides fluctuations with smaller magnitudes, as well as a smaller average value for the equivalent capacitors. Moreover, the second-order harmonic has a dominant role that leads to values higher than 3 F for equivalent capacitors. In comparison with the first and second control laws, the use of the third control-law-based method will result in very small circulating currents, since it is trying to control and eliminate all harmonic components of the circulating currents. This result leads to very small magnitudes for both the upper and lower arm currents, noticeably decreasing the total MMC losses. All simulation results are verified using MATLAB software in the SIMULINK environment.publishersversionpublishe

    Synchronous Active Proportional Resonant-Based Control Technique for High Penetration of Distributed Generation Units into Power Grids

    Get PDF
    This paper deals with a synchronous active proportional resonant-based (SAPR) control technique for interfaced converters, enhancing the stable operation of the power grid under high penetration of distributed generation sources. By considering the grid specifications and load currents, both d and q axis of converter currents are obtained in terms of active and reactive power and also angular speed using small-signal linearization method. Then, swing equation is analyzed in detail to achieve the reference current components in the current control loop of the interfaced converter. By using the obtained swing equation and a non-ideal proportional resonant (PR) controller, a new control technique is proposed, which introduces the behavior of synchronous power generators based on power electronic converters in distributed generation (DG) technology. The effectiveness of the proposed control technique is verified through stringent simulation studies in MATLAB/SIMULINK. Index Terms—Distributed generation (DG), synchronous active PR-based (SAPR), synchronous power generator.Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integratio

    Enhancing Transient Stability of Power Synchronization Control via Deep Learning

    No full text
    Transient stability of grid-connected converters has become a critical threat to the power systems with high integration level of renewable power generations. Thus, this paper aims to study the transient stability of power synchronization control (PSC) and propose a developed control system by employing deep learning methods. In order to extract and predict the voltage trajectory of the grid-connected converter system, a long short-term memory (LSTM) network has been trained and then integrated to PSC for adapting the synchronization loop of the converter to the grid condition. In the proposed control system, active power reference and internal voltage of the converter are updated dynamically to both satisfy the low voltage ride through (LVRT) requirements of the grid and prevent the loss of synchronization of the converter. The developed control system is validated by time-domain simulations.Peer reviewe
    corecore